Мария Синянская: о принципе «вертикаль – горизонталь» и значении прямого угла в геодезии

9 минут
Мария Синянская: о принципе «вертикаль – горизонталь» и значении прямого угла в геодезии

Мария Синянская – исследователь, защитивший кандидатскую диссертацию по истории и циклам развития геодезии, популяризатор наук о Земле, сооснователь и редактор проекта "История геодезии", автор многочисленных научных и научно-популярных статей – представила статью с тонкими наблюдениями об условиях параллельности и перпендикулярности.


О принципе «вертикаль горизонталь»

В человека природой изначально заложены прямой угол, условия параллельности и перпендикулярности. Этих знаний на первых этапах жизнедеятельности было достаточно для построения на земле прямоугольных фигур и выполнения различных измерений на местности, в том числе при разбивке земельных угодий.

В применяемых системах измерений, в конструировании всех геодезических инструментов раннего времени изначально был заложен принцип «вертикаль – горизонталь». Вследствие данного обстоятельства все приборы и устройства (ватерпасы, хоробаты, землемерные кресты, позднее – теодолиты, нивелиры и др. приборы) должны были иметь устройства для приведения их в рабочее положение, где одна ось была бы расположена вертикально, а другая горизонтально. Принцип четырех направлений являлся также основой таких геодезических понятий, как азимут, дирекционный угол, румб и т.д.

Геодезические системы измерения развивались на основе этих принципов, в том числе и для решения задач, связанных с геометризацией и координатизацией пространства, с практикой и теорией обработки результатов измерений. В основу структуры систем измерения был заложен, как правило, прямой угол, и поэтому, по существу, эти системы измерений представляли инструменты прямого угла. Конструирование геодезических инструментов начиная с ватерпаса, хоробата и землемерных крестов, а в дальнейшем – астролябии, теодолита, нивелира и других осуществлялось с жестким соблюдением условий прямоугольности основных частей приборов. Во всех геодезических инструментах такими составными частями являлись различные оси и плоскости: вертикальная ось вращения инструмента, ось вращения зрительной трубы, зрительная ось, ось уровня, плоскости лимба, алидады горизонтального и вертикального кругов. 

О методах построения прямого угла

Во взаимном положении рассматриваемых плоскостей и осей закладывалось условие прямого угла, условие перпендикулярности. Соответственно основными поверками во всех геодезических инструментах закладывались соблюдения условий перпендикулярности взаимного положения плоскостей и осей. Например, зрительная ось должна быть перпендикулярна оси вращения трубы; ось уровня перпендикулярна или параллельна оси вращения инструмента; плоскости горизонтальных и вертикальных кругов перпендикулярны соответствующим осям и т.д.

Поверки перпендикулярности (поверки прямого угла) осуществлялись во все времена, начиная с использования ватерпаса. Поэтому конструктивной особенностью геодезических инструментов не только Древнего мира, но и Нового времени являлось жесткое условие взаимного расположения в инструменте рассматриваемых частей и обязательное выполнение соответствующих поверок и юстировок.

Угловых измерений как таковых, в нынешнем их понимании, в Древнем мире не существовало. Все измерения сводились в основном к построению прямого угла и разделялись (по тому времени) на приближенные и точные. В первом случае измерения осуществлялись с помощью всевозможных землемерных крестов, угольников и различных способов с использованием человеческой фигуры.

Во втором случае применялся египетский треугольник, в вещественном варианте представлявший собой веревочный шаблон из мерной веревки с метками на расстоянии в 3, 4, 5 единиц длины, в вершинах которых устанавливались колышки. Далее по ним натягивалась веревка, которая образовывала прямоугольный треугольник, у которого при вершине двух катетов получался прямой угол, как показано на рис. 1 (египетский треугольник со сторонами 3, 4, 5).

Screenshot_1.png

Данный вариант имел наибольшую точность построения прямого угла, которая в большей степени зависела от точности изготовления (нанесения меток) мерной веревки.

Другой вариант точного построения прямого угла (циркульный) был в большей степени теоретическим способом построений и основывался на получении вписанного в окружность прямого угла, стороны которого опирались на концы диаметра (см. рисунок ниже). Для получения прямого угла нужно было провести полуокружность, на которой взять любую точку и соединить ее с концами диаметра. При вершине, противолежащей диаметру получившегося треугольника, образовывался прямой угол.


Проложение хода. При проложении ходов требовалось построение прямого угла. Например, на какой-либо выбранной стороне хода АВ в намеченной точке требуется построить прямой угол. Первоначально на основании отрезка АВ строился равнобедренный треугольник с боковыми сторонами, равными радиусу окружности, а затем в эту окружность вписывался прямой угол. Третьей точкой (вершиной) для этого треугольника являлась точка О, как центр окружности. Далее на продолжении в направлении АО откладывался отрезок ОС, равный радиусу R. В этом случае отрезок АС является диаметром этой окружности, в которую вписан прямой угол АВС. Сторона ВС, естественно, является перпендикуляром к линии АВ. Если точки В или С являются крайними точками хода, то в них всегда имеется возможность построить прямоугольный треугольник, необходимый для решения той или иной инженерной задачи.

Способы, связанные с египетским треугольником и циркульным методом, послужили средством для получения образцовых мер построения прямого угла. Именно на их основе получали рабочие меры, в частности, различные землемерные кресты и т.п.

В решении различных землеустроительных задач и задач по созданию различных сооружений, в том числе инженерно-технических, в системе геодезических построений использовалось всего несколько главных фигур: прямой угол, прямоугольный треугольник, прямоугольный четырехугольник и квадрат.

Прямой угол. Прямой угол является универсальным мировым стандартом, заложенным в человека, в природу и взаимодействие различных физических сил.

Для реализации прямого угла в геодезических работах использовался угольник. Нивелирование с применением вертикальных реек или ватерпасов широко применялось с древнейших времен и вплоть до XX века. В различных системах координат, использовавшихся с древнейших времен, их основу составляли две взаимно перпендикулярные (координатные) линии (рис. 3): начальный меридиан и экватор (декуманус максимум и кардо максимум). На рисунке ниже изображён маркировочный центурийный камень (СМ – кардо максимум, ориентация с юга на север, DM – декуманус максимум, ориентация с востока на запад):

Screenshot_4.png

Построение прямого угла на местности было возможным начиная с глубокой древности с помощью ранее описанных различных вариантов. В Средневековье и в более позднее время применялись землемерные кресты различных видов и формы, в том числе экеры. В построении прямых углов использовались героновские диоптры, а также астрономические методы и устройства. Во всех видах построений их точность была невысокой (около ¼ градуса), но в особых случаях (как при сооружении египетских пирамид) достигала величины порядка 3 минут.

Человек в вершине угла

Следует отметить, что в глубокой древности, ещё до использования инструментов, люди могли проводить межевание с помощью фигуры человека. Так, например, человек вставал в вершине первого угла. По направлению створа плеч строилось одно направление, а по прямому взгляду – перпендикулярное ему направление. В одном из этих направлений человек шагами измерял нужное расстояние. Затем в другой точке операция повторялась. Такая реальность, возможно, предшествовала появлению первых геодезических инструментов. Точность построения прямого угла подобным способом находилась в пределах от 10-1 до 10-2.

Прямоугольный треугольник. Прямоугольный треугольник представляется структурным продолжением прямого угла. Эта фигура и ее материальные реализации, в том числе в веревочном варианте, находили самое разнообразное применение. Так, с помощью подобного построения треугольника Фалес определял расстояние до корабля. Иногда это построение считают открытием триангуляции. Фалес Милетский, находясь в Египте, использовал условие подобия прямоугольных треугольников для решения задач по определению высоты Гизехских пирамид. Он утверждал, что, как только его тень станет равной длине (высоте) его фигуры, в это время нужно измерить длину тени пирамиды, которая будет равна её высоте, что показано на рисунке ниже:

photo_2020-10-07_11-29-52.jpg  

Реализация семнадцати героновских задач в большинстве случаев была возможна с применением прямоугольного треугольника. С помощью прямоугольного треугольника простейшим способом определялись длины катетов, гипотенуза и площадь треугольника. Египтяне еще в III тысячелетии до н.э. определяли эту площадь по известной формуле половины произведения двух катетов. Открытие Пифагором доказательства теоремы было значительным событием для теоретической и практической геометрии, а также для хозяйственной действительности. Формула Пифагора по существу определяет и характеризует метрику окружающего (евклидова) пространства. А такие фигуры, как прямоугольный четырехугольник и квадрат, получили свое раннее применение при планировке отдельных сооружений, особенно в землеустройстве, межевании, земельном кадастре. Прямоугольный треугольник использовался в Древнем Риме и других странах при проектировании водопроводов, каналов и городской канализации. Вместе с тем для подсчета площади прямоугольного треугольника использовалась формула: 

где S – площадь; a, b – соответствующие прямоугольные катеты.

Возможно, данное выражение было известно еще с тех времен, когда люди изобрели формулы для подсчета площади квадрата и прямоугольного четырехугольника (как их половину). В плане исторического времени это уже совпадает со временем деления земельных угодий и их оценки (не позднее третьего тысячелетия до н.э.).

Важнейшим фактором для широкого использования прямоугольного четырёхугольника является его универсальность и оптимальность, а также его преимущество перед другими формами при разбивке, планировке сооружений, городов, земельных угодий и т.д. Необходимо заметить, что данная фигура в большей степени отвечает использовавшимся тогда формам координатизации пространства.

Около 10 тысячелетий назад в строительстве жилищ человек перешел от круглой формы к прямоугольной. Примерно в это же время (или чуть позднее) начали делить земельные угодья прямыми линиями с прямым углом между ними. Намного раньше прямой угол стали использовать в организации окружающего пространства и ориентировке в нем. Объяснение феномена раннего появления и использования прямого угла в деятельности людей лежит в сфере влияния внешней среды. Это влияние выражено и сформировано в виде принципов влияния: принцип «вертикаль – горизонталь» и принцип четырех направлений. Они оказывали фундаментальное влияние на развитие геодезии в течение всей истории ее развития. Главной характеристикой и составной частью этих принципов является прямой угол. Он стал важнейшей характеристикой окружающей среды и всего пространства, как и два других геометрических свойства – перпендикулярность и параллельность. Наиболее наглядно эти геометрические свойства выражены в фигуре человека. В геометрии фигуры человека вполне четко и очевидно заложено шесть главных направлений. Ими в человека заложена пространственная система координат. Эта «система координат», заложенная в человека внешней средой («принципы влияния»), и вся встроенная в нее система прямых углов (условий перпендикулярности и параллельности) позволяют человеку не только отлично выстраивать систему ориентации в пространстве, но и строить простейшие геометрические фигуры на земле. Вся геометрия человека подчинена условиям перпендикулярности и параллельности – основному геометрическому свойству окружающего пространства.

Важнейшей функцией прямого угла в геодезии являлись системы координат, которые во все времена были прямоугольными. В измерении и моделировании пространства необходимым условием является ориентировка в нем. Поэтому, как правило, определяется главная ориентирующая линия в пространстве (на местности или модели), которая затем становится одной из осей координат («Принцип четырех направлений»). К ней под прямым углом проводится вторая ось. Этим обеспечивается возможность координатизации окружающего пространства (в плоскости). Для трехмерного пространства ориентируется уже две оси (или плоскости), на базе которых строится пространственная система координат. В координатизации окружающего пространства и угловых измерениях роль прямого угла как важнейшей составной части сохраняется. Столь же велика роль прямого угла в моделировании, контроле объектов и явлений окружающего пространства. В инженерной геодезии при возведении сооружений и контроле их геометрии важнейшее значение имеют условия перпендикулярности и параллельности. Эти два важнейших свойства окружающего пространства есть свойство прямого угла (или двух прямых). Сформировавшаяся или формируемая геодезическая технология в существенной части предопределяла возможность реализации этих геометрических требований. Пока прямой угол остается некой нормой окружающей среды, пока сохраняется «геометрия» человека, до тех пор рассмотренное значение прямого угла в геодезии будет сохраняться.